
JOURNAL OF COMPUTATIONAL PHYSICS 38, 45-63 (1980) 

An Orbit Averaged Particle Code* 

BRUCE I. COHEN, THOMAS A. BRENGLE, 
DAVIS B. CONLEY, AND ROBERT P. FREIS 

Lawrence Livermore Laboratory, University of Calfornia, 
Livermore, Cal$ornia 94550 

Received June 20, 1979 

A new method for efftcient computer simulation of long time-scale plasma physics 
phenomena is proposed which has proved successful in one- and two-dimensional magneto- 
inductive particle codes. The method relies on orbit-averaging charge and current densities in 
Maxwell’s equations before solving for the self-consistent electric and magnetic fields in order 
to filter out unwanted high-frequency oscillations and reduce the number of simulation parti- 
cles necessary to till phase space adequately. This method offers the potential of greatly im- 
proving the economics of simulating the evolution of a plasma over time intervals which are 
long compared to particle orbit periods. A particular scheme using a predictor-corrector 
iterative method and time splitting is discussed, which is both stable and accurate. Application 
to the efficient simulation of a magnetic mirror machine plasma injected with energetic neutral 
beams is presented. 

1. INTRODUCTION 

The efficient simulation of collective plasma behavior is made extremely difficult 
by the large range in magnitude of both spatial and temporal scales over which in- 
teresting physics occurs in laboratory and natural plasma. The success in recent years 
of the particle approach to computer simulation of plasmas is due in great part to 
gains made in reducing the range of space scales present in simulations by intelligent 
use of grids, finite-sized particles, and spatial smoothing and filtering techniques [I]. 
A hybrid simulation technique, in which a combination of fluid and particle equa- 
tions is used, has been useful in reducing or eliminating both noise due to particle dis- 
creteness and unwanted high-frequency oscillations. A couple of examples of hybrid 
codes are described in Ref. [2]. However, the elimination of fast time-scale 
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phenomena in this type of simulation is necessarily accompanied by the loss of 
kinetic effects. In this work we wish to retain kinetic effects arising from the particle 
orbits, e.g., finite Larmor-radius effects, but remove high-frequency oscillations in 
electric and magnetic fields, and follow only relatively slower variations. 

This article describes the introduction and use of a new method for particle simula- 
tion of plasmas, which follows individual particles over their natural time scale, but 
which solves Maxwell’s equations for the self-consistent electric and magnetic fields 
relatively less often as they vary over a much longer time scale. Byers suggested that 
a conventional particle code, one that solved for fields as often as it advanced particle 
velocities and positions, could be extended to simulations of very slowly varying 
phenomena by some means of temporally averaging or filtering the plasma current 
and charge densities appearing as sources in Maxwell’s equations [3 1. The goal was 
to reduce the requirements on the number of particles necessary for accurate, 
reproducible, and quiet simulations and hence also to reduce the ultimate computer 
memory requirement and run-time of a typical simulation. In this simulation scheme 
any given particle would fill in a relatively larger region of phase between successive 
solutions of the field equations. A similar idea has been used in simulations which 
calculated self-consistent steady-state electric fields for a set of representative particle 
trajectories [4]. If orbit averaging could be done in a time-dependent simulation 
without sacrifice of numerical stability and accuracy, then simulation of relatively 
slowly developing plasma phenomena with this technique might require much less in 
computer resources than would more conventional approaches. For example, this 
could make feasible large SUPERLAYER simulations [5] of build-up of a magnetic- 
mirror fusion plasma approaching reversal of the magnetic field using parameters 
closely modeling mirror experiments at Lawrence Livermore Laboratory. This is in 
fact our most immediate goal. 

The idea of splitting the solving of the particle equations of motion and the field 
equations is not new; it has been used in particle codes, and some of its aspects have 
been analyzed in previous investigations [6,7]. Godfrey analyzed the conditions for 
numerical Cherenkov instabilities in electromagnetic codes in which particle quan- 
tities were advanced for N time steps (N > 1) before the current was accumulated and 
the field equations were solved [6]. However, there was no temporal averaging of the 
current in the algorithms he considered. His results indicated that numerical stability 
worsened as N increased, but he overlooked a virulent numerical instability 
associated with temporal aliasing when N > 1. Langdon and Lasinski observed this 
instability in some of their simulations [7]. 

The extension of plasma simulation algorithms to longer time steps has received a 
great deal of attention in recent years. The methods introduced by Denavit and his 
co-workers in this area have been especially imaginative and creative [8,9 I. 
Rathmann, Vomvoridis, and Denavit introduced in Ref. [8] a hybrid simulation 
scheme in which particles are advanced with long time steps, At P w; ‘, WC ‘, where 
w,, and w, are plasma and cyclotron frequencies, which are limited only by a 
relatively slow nonlinear time scale. This was achieved by decomposition of the fields 
into a limited number of spatial Fourier modes and linearization of the particle equa- 
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tions of motion with respect to the fields. Crystal, Denavit, and Rathmann have more 
recently explored the extension of fluid or Vlasov simulations to longer time steps by 
implicit solution of difference equations [9]. Their algorithms require inversion of 
sparse matrices which can be done accurately and efficiently. On the other hand, 
Langdon 1 lo] has pointed out in a general analysis of finite time-step considerations 
in particle codes certain fundamental difficulties that preclude some approaches to 
large At. 

We have taken a new point of view on the long time-step problem. We combine 
time-splitting with temporal averaging to allow the self-consistent solution of Max- 
well’s equations on a slow time scale using a long time step, but we insist that the 
particle dynamics be followed on the natural time scale of the orbit. (We should com- 
ment on our use of the words “temporal averaging” or “orbit-averaging.” A weighted 
normalized sum of the plasma currents over a long time interval is computed in our 
code before Maxwell’s equations are solved for the electromagnetic fields. We 
describe this weighted sum as a temporal or orbit average. However, only values of 
the plasma currents which have already been determined by either a predictor or 
corrector projection of the particle orbits are used. This scheme is discussed in detail 
in Section 3.) In the cases of interest to us here, the particle orbit time scale is set by 
the cyclotron frequency associated with an externally applied magnetic field. This is 
typically much faster than the time scales for plasma transport and on which self- 
consistent electric and magnetic fields in the plasma vary due to, for example, 
neutral-beam injection or radio-frequency heating at low frequency. In Section 2 we 
introduce a specific physics model to which we have applied orbit-averaging. We also 
present a simplified analysis of the impact of orbit-averaging on the dispersion rela- 
tion for the linear normal modes in this model. This has provided useful intuition and 
has motivated certain features in our algorithms. A specific algorithm combining 
orbit-averaging and time-splitting in a magneto-inductive simulation [5, 11, 121 is 
described in Section 3. We report the results of simulations in Section 4. 

2. ANALYSIS OF MODEL EQUATIONS 

Motivated by the desire to simulate the build-up of a mirror plasma by neutral- 
beam injection to high ,8, p = 4nnm(v2)/B2, and reversal of the magnetic field, we 
consider the one- and two-dimensional magneto-inductive particle codes MAGIC 
[ 121 and SUPERLAYER [5]. These codes use a Darwin model [ 131 to calculate self- 
consistent electric and magnetic fields from the plasma currents provided by finite- 
orbit ions, assume charge neutrality, and neglect electrostatic fields and electron 
dynamics (appropriate assumptions for open magnetic field lines, Ti * T,, and slowly 
varying phenomena: 1 a/at I< wzi 3 eB,/mic). A schematic of the coordinate system 
and variables in the one-dimensional, cylindrically symmetric code MAGIC is shown 
in Fig. 1. 

MAGIC employs a conventional Boris pusher for advancing particle velocities and 
positions [ 141. A cloud-in-cell particle representation is used [ 151. The particle 
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FIG. I. Coordinate scheme and variables for one-dimensional, cylindrically symmetric, magneto- 
inductive particle simulation. 

current J, is accumulated on a uniformly spaced radial grid by means of linear inter- 
polation. A simulation particle occupies a cylinder of radius r, width Ar, and unit 
length in z; hence, particle charge and current densities must be normalized to a 
volume 2nrAr, which is not necessarily constant in time. Once the plasma current is 
known, Ampere’s law determines the self-consistent magnetic field B, with the dis- 
placement current neglected. Faraday’s law then gives the induction electric field E, 
associated with any changes in the magnetic field. With the self-consistent electric 
and magnetic fields, the particle velocities (u B, v,) and radial positions r can then be 
advanced to their new values. The particle and field equations fit together in the usual 
leap-frog fashion [ 1, 121. 

To illustrate the influence of temporally averaging the current J, on the linear nor- 
mal modes of the simulation model, we now present a simple model analysis in slab 
geometry (B+ y, r + x). However, this analytical model does not split the time scales 
for calculating fields and particle orbits. We ignore spatial grid effects and only 
analyze the effects of finite time step. The model difference equations are 

B;,j = B, + &,A,” 

ux n+1/2 =,:-l/2 + 7 e.Lqxn -xj)(,;+1/2 + u,“- “2)Bf j 
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g+ 112 = $-l/2 
Y Y + c fg S(x” -xi) [ qj - & (v:’ “2 + vy”2)B:,j 

I 
(5) 

i 

xn+’ =x” + v;+‘12 At, (6) 

where S(x” - xi) is the usual interpolation factor accounting for finite-sized particles 
and a discrete spatial grid [ 11; j is the spatial grid index; B, is a uniform applied 
magnetic field, D,,j and (D:)j are the standard centered two-point and three-point 
first and second spatial difference operators; n denotes the time level; and W is the 
data window or, more formally, a normalized digital-smoothing function, 
c,, W(n -n’) = 1. Th us, on the right side of Eq. (1) a weighted time-average of J, is 
calculated. We construct J, using 

Jg,; 1’2 = T i [ S(Xl - Xj) + S(Xl’ ’ - Xj)]V,“,: “2 (74 

or 

J,“.j = C 
eS(xf - xi) 

I m Py,i - ~B,xl - ~c S(X; - Xj,)A~,j, 
I’ I 

, Ub) 

where P, E mv, + eB,x/c + e Cj S(x - xj) Ayj/c is the canonical momentum and is 
conserved in this model. Because the current J, is given in Eq. (7b) at integer time 
steps, the left side of Eq. (1) is replaced with (D:)jA,” when Eq. (7b) is employed; and 
Eq. (1) determines A,” implicitly. 

At this point we examine the propagation of small amplitude waves that are admit- 
ted by these model equations in the limit of a cold plasma. We linearize Eqs. (1) to 
(7) Fourier transform in time, ignore temporal aliasing [ 1, lo], and set Ax = 0. For 
the model that constructs the current J,, directly from the particle velocities v,, 
Eq. (7a), the relevant Fourier-transformed difference equations are 

-k:Ay cos wAt/2 = -hn,ec-’ l?‘(w)C,, (84 
gy cos wAt/2 = i/?,(cAt/2)-’ sin wAt/2 PI 

-iU;. sin wAt/2 = (wz At/2)V; cos wAt/2 03~) 
-iv’, sin wAt/2 = (eAt/2m)Ey - (w,” At/2)V; cos wAt/2, @d) 

where WE = eB,/mc and n, is the plasma density. 
Algebraic reduction of this system of equation is straightforward: we obtain the 

dispersion relation 

mY2 + (@+ k:c’/w$)Y- kf;v: At214 = 0, (9) 

where vA = w~c/wP is the Alfven velocity and Y = tan2(wAt/2). To follow accurately 
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the cyclotron motion, one must require that e~z At < 1. In this limit the two solutions 
of Eq. (9) are given by 

and 

Y = -(l + k:c’/@‘w;). (lob) 

The first solution, Eq. (lOa), is the compressional Alfven branch. For p > 0, these 
waves are unconditionally stable; and Y < wf At2/4. When m= 0, x4. and l?y are con- 
sequently zero; and simple cyclotron oscillations of V; and U; are recovered from Eqs. 
(SC) and (8d) with frequency described by Eq. (lOa). Thus, the spectrum of Alfven 
waves can be modified and filtered by suitable choice of digital-smoothing function 
W(t)* 

The remaining solution of Eq. (9), Eq. (lob), describes unstable even-odd oscilla- 
tions. The source of even-odd oscillations is the identical time-centering and simple 
averaging of the left sides of Eqs. (1) and (2). We can partially compensate for this 
difficulty by slightly uncentering Eqs. (1) and (2): 

<D:>j+ @:+I +A,“)+ (D:)j [CIA:+’ + (l -Or)A,“] 

-f- (E;+l + E;)j+ [VE$+’ + (l -V)Ey”],ja 

(11) 

We introduce frequency-dependent dissipation with choice of a and r7 such that a, 
q > -k. Equations (1) and (2) are then biased in the backward direction. We have 
confirmed the dissipative effect of a, q > + with analysis and simulations for 
W(n - n’) = 1 when IZ = n’ and zero otherwise, which corresponds to no time- 
averaging. For this case the damping rate of a particular mode is proportional to 
(a + q- l)w2At. 

For an algorithm employing the representation of J, given by Eq. (7b), there is 
only the compressional Alfven branch: 

tan2(wAt/2) = --- 
kf,v; At214 

[ 1 + (0,” At/2)2] @ + kfc2/w; ’ (12) 

These modes are unconditionally stable for l? > 0. When @ = 0, E, and x? are com- 
pletely damped; only cyclotron oscillations of the particle velocities and positions 
persist. For m > 0 and WE At/2 $ 1, very short wavelength modes are folded back 
down in frequency into stable even-odd oscillations wAt = f71 (see Fig. 2). For 
l?‘= 1 and w: At/2 < 1, w2At2/4 < tan2(wAt/2) < wz2 At214 < 1; and the com- 
pressional AlfvCn branch is stable and suffers very little numerical dispersion. The 
code MAGIC [ 121 takes advantage of the stability of this algorithm, but performs no 
time-averaging (IV= 1). 

The analysis presented in this section has established the numerical dispersion and 
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FIG. 2. Dispersion relation for compressional Alfvtn waves in a model orbit-averaged magneto- 
inductive algorithm for qw > 0 and wF,dt 9 1. The effective Alfvtn frequency is given by 
k~@ = kc,/{ 11 + (w,0,~lt/2)~ ] @ + k’c*/i$,, ) I’* for the algorithm using Eq. (7b). For qw > 0 and 
W$4f < I. /WI < wzi. 

dissipation characteristics of the compressional Alfven waves admitted by a magneto- 
inductive simulation model. The main conclusion is that the model algorithm employ- 
ing canonical momentum ought to be more stable than the one relating the transverse 
current directly to the particle velocities. Orbit-averaging modifies the spectrum of 
waves exhibited. With appropriate shaping of the filtering function W, the numerical 
dispersion added to low-frequency waves can be minimized and high-frequency waves 
outside the bandwidth of the filter can be quite effectively damped. Uncentering of 
Maxwell’s equations can add frequency-dependent dissipation, which we find useful in 
controlling numerical instability and errors. The model algorithm analyzed in this 
section has been employed in the code MAGIC only in the limit of no orbit- 
averaging (qm = 1). We have not implemented any of the more general class of 
algorithms with @m # 1 except as combined with time-splitting of the particle and 
field equations (discussed in Sections 3 and 4). Nevertheless, our analysis establishes 
intuition for some of the numerical characteristics and simple types of waves expected 
in the simulation scheme described in the next section. 

3. ORBIT-AVERAGED MAGNETO-INDUCTIVE ALGORITHM 

We have added orbit-averaging and time-splitting to the SUPERLAYER [5] and 
MAGIC [ 121 algorithms and given the new codes the names SUPERAVERAGE and 
MAGICL. Both codes have the following computational scheme illustrated in Fig. 3. 
Electric and magnetic fields E and B are determined at discrete macro time steps AT. 
The particle motion is calculated incrementally at micro time steps At, At <AT. The 
computational cycle begins with fields given at the last macro time step (or at t = 0 
for the first time step). Particle velocities and positions are then advanced over many 
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FIG. 3. Block diagram for the orbit-averaged codes MAGICL and SUPERAVERAGE. 

micro time steps with E and B fixed. The canonical form of the equations of motion 
used is given by 

v”+“* = v”-“~ +c (e/m)dt S(r”- q) 
j 

Ej+ $(v~+“~ )( Bj+ v”-I’*) 

- E qyv” + 10 + v”- “*I 1 (134 
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and 

Pi’ = [(r”+ v:+ I’* At)2 + (II;+ I’* At)2]“2, (13b) 

where j is the spatial grid index, v,;‘” is the spatially dependent ion-electron drag rate, 
and solutions of Eqs. (13a) and (13b) for vnf”’ and r”+’ follow Boris’ scheme with 
finite w,dt corrections included [ 141. 

The transverse current J, is accumulated on a radial grid at each micro time step 
according to one of the following prescriptions, 

J$“* = f $ [S(rl- ~j)u,~“2 + S(rl+’ - [j)vi,: “‘1 
I 

or 

N- - e 51 %!p [L,i- tyi], 
my 

(14a) 

(14b) 

where L,,i is the canonical angular momentum of the ith particle and v = rA B is 
related to the magnetic flux. The use of L,,i in Eq. (14b) requires an additional 
storage array. In Eq. (14a) the first factor v,:“~ appearing is relative to the particle 
position vector rl, while the second v,:“~ is relative to r;” (see Ref. [ 141). 

The approximation made on the right side of Eq. (14b) simplifies the computations 
without apparent deleterious effect on our simulations. There is a certain small loss of 
momentum conservation due to the existence of a fictitious self-force connected with 
this approximation [ 15 1. However, good particle statistics per spatial cell and the ab- 
sence of significant variations of the particle density over a cell justify the replace- 
ment, 

S(rl - yj) x S(rl - r,)ty , rz S(+ - rj) C S(r; - r,)iyi = S(rl - rj)yj, 
I I 

which has been made in Eq. (14b). The computational gain due to this approximation 
and the basis for its adequacy were previously pointed out by Dickman, Morse, and 
Nielson [ 111. 

The algorithm next calculates the magnetic flux w z ‘A,, from Ampere’s law 

=- J,,j(A4AT + n/At), (15) 
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FIG. 4. Digital-smoothing function W(t) as a function of time and its Fourier transform WC, as a 
function of frequency for (a) a square data window, (b) a tent shape, and (c) a Gaussian. 

where M denotes the macro time level, N = AT/At, JOi is given by either Eq. (14a) or 
Eq. (14b), and a conventional centered spatial difference operator is taken for 
(a’/&‘). Three illustrative examples of W and the corresponding Fourier transforms 
#“, are shown in Fig. 4. When Eq. (14b) is used for J,, ~JI is taken equal to vwt I’* 
on the right side of Eq. (14b); solution of Eq. (15) for v/M+“* is then implicit, but is 
straightforward. Equation (15) predicts the flux from which the magnetic and electric 
fields are then readily determined: 

and from Faraday’s law, 

py==--- - (1-V) EM- 2 

r o ~/CAT (17) 

where v is a time-centering parameter. Next, particle velocities and positions are ad- 
vanced forward over the N micro time steps from t = MAT to t = (M + 1) AT in a 
corrector iteration using Eq. (13). The fields (E, B) = (E, B)? in Eq. (13a) are ob- 
tained by interpolation and extrapolation from (E, B)M and the newly predicted 
(E, B)“‘+ I’*. 

With the corrected particle positions and velocities, the current (Je,i),‘ft I” is ac- 
cumulated again and the fields are then corrected. Ampere’s law becomes 

(-i&)jq= -~(~-~),if-~(J~.,i)~‘1/2, (18a) 
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when Eq. (14a) is used for J,, and 

Mt 1/2 

when Eq. (14b) is used. a is a second time-centering parameter. The magnetic and 
electric fields are given by 

B”+‘=V)( 0 

and 

Mt1 E, =..--- (20) 

With (E, B)““” ’ further corrections of the particle trajectories can be made over the 
interval MAT < t < (M + 1) AT. However, with more corrector iterations the poten- 
tial economic advantage of orbit-averaging decreases. The goal of computational ef- 
ficiency motivates minimizing the product of the number of simulation particles mul- 
tiplied by the number of predictor-corrector iterations per macro time step that are 
required for stability and accuracy. In any case, after conclusion of the corrector 
iterations, the fields (E, B)“” are used in Eq. (13) to predict new velociteis and posi- 
tions over the next macro interval (M + 1) AT < t < (M + 2) AT. The computational 
cycle then continues. With appropriate extensions to live phase-space dimensions 
(r, 2; v,, v,, vZ), these equations also describe SUPERAVERAGE. 

We have made available a number of different algorithm options. Our intention is 
to choose various options and adjust parameters in such a way as to filter out high 
frequencies, minimize simulation costs, and achieve numerical stability and high ac- 
curacy. The principal options and parameters at our disposal are the representation of 
J, employed, Eq. (14a) or (14b); N, the number of micro time steps per macro step; 
the number of corrector iterations; the values of the centering parameters a and q; the 
shape of the digital-smoothing function W, and the number of particles required for 
good statistics. In general, these selections cannot be made independently and may be 
somewhat dependent on the problem being studied. In the final section we summarize 
our preliminary simulation results and corresponding choices of options and 
parameter values for studies of ion-ring build-up using MAGICL and neutral-beam 
injection in the 2XIIB mirror plasma using SUPERAVERAGE. Our studies of the 
orbit-averaging method are only a beginning, but they clearly demonstrate many of 
the properties of the method and its power. 
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4. SIMULATION RESULTS 

We have tested one-dimensional orbit-averaged magneto-inductive codes as 
described in Eqs. (13) to (20) with both representations for J,, Eqs. (14a) and (14b). 
The two-dimensional code SUPERAVERAGE uses Eq. (14a) for J,. The algorithm 
making use of canonical angular momentum in J,, Eq. (14b), requires more storage 
and more operations in order to solve the resulting implicit equation for the magnetic 
flux. Hence this algorithm makes for a slower code, but Section 2 suggests that it 
may have improved numerical stability. 

To provide an interesting problem for testing MAGICL and SUPERAVERAGE, 
parameters have been adopted to model neutral-beam driven build-up of the ZXIIB 
mirror plasma at Lawrence Livermore Laboratory to a high p plasma whose 
magnetic field is nearly reversed somewhere in the plasma [S 1. In MAGICL we 
modeled injection by introducing deuterium ions continuously with a current 
I = 50 A/cm into a magnetic field B, = 4500 G at a radius r = 5.5 cm and with a 
spread of 1 cm. The ions had energy 12 keV injected tangent with a spread of 1.2 keV 
and thus encircled the axis. (The input parameters and output diagnostics of both 
MAGIC and MAGICL are in conventional dimensional units, but computations in- 
ternal to the codes are in nondimensional scaled units [ 121.) In the absence of colli- 
sions and mirror losses, a 50 A/cm injection rate achieved AB/B, - 1 after an inter- 
val of time wzit - 800 or only a little over 125 cyclotron periods. After the magnetic 
field reverses, electrostatic and electron dynamical effects that are ignored in 
MAGIC, SUPERLAYER, and their orbit-averaged versions should be included [ 171. 
The credibility of simulations of field reversal in the absence of these effects, as in 
Ref. 151, is highly suspect. 

In Figs. 5 and 6 we display typical simulation results from MAGICL, with J, 
given by Eq. (14a), and MAGIC, which uses canonical angular momentum in 
forming J,. In these examples both codes used a time step oEi At = 0.2 and equal 
numbers of particles (1024). In MAGICL, w,“~ AT= 12.8, so that N= AT/At = 64, 
o = v = 0.75, and two corrector iterations were employed. MAGIC, which was better 
time-centered with r,i = 0.6, exhibited significant noisiness in E, associated with the 
discreteness of the injection model on the micro time scale (see Fig. 6). MAGICL 
evidently filtered out most of this noise by averaging, time-splitting, and introducing 
dissipation with a, q > +. We attribute the differences in the particle phase space and 
hence in the charge density and current to the enhanced level of E, oscillations in 
MAGIC. In the absence of these oscillations of E, there was a distinct ring in the 
u, - r phase plane (see Fig. 5). Otherwise the simulation results of the two codes bore 
great similarity. Figure 7 shows the results of simulations with MAGICL in which W 
was square-shaped in one case and smoothly switched on and off in the other. The in- 
duction electric field exhibited approximately twice the jitter for the case with the 
square data window but otherwise the same magnitude and trend. In all other code 
diagnostics it was difftcult to detect any differences whatever. 

Contrary to the fears expressed in Section 2, the algorithm using Eq. (14a) for J, 
performed just as well as that using Eq. (14b). No real differences in physics results, 
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FIG. 5. Ion phase space (a) v, vs r, (b) v, vs. v,, and (c) the charge and (d) the current density 
profiles at wfit = 820 from a simulation using MAGIC and the orbit-averaged code MAGICL with the 
same number of super-particles (1024). Tangential injection and buildup of a charge-neutralized 
deuterium current ring are studied with the following parameters: B, = 4500 G, Ei = mvf/2 = 12 keV, 
AE,/E, = f0.05, and I = 50 A/cm continuously injected at r = 5.5 f 0.5 cm. There is a conducting wall 
at r = 16 cm. In MAGIC and MAGICL, a&At = 0.2; in MAGICL, o&AT= 12.8. 



58 COHEN ET AL. 

0 16 

r--cm 
0.3 

MAGICI L 

I F-- 

0 

F 17 

(a) 

-‘.O t 
0 16 

r-cm 
0.3 [J-q 

0 600 0 600 
0 

wci t 
0 

%i t 

r=4cm 

0.1 

-5 

? IdI 

w” 
0 

0.01 

-0.1 

0 E 
0 800 0 I300 

0 
%i t 

0 
%i f 

FIG. 6. For the same simulations described in Fig. 5 are shown (a) the self-magnetic field AEI/B,, 
vs. r, (b) the spatially averaged &?= 8nnmi(vf/2)/B& (c) the self-vector potential A, vs. wz!t and (d) 
E, vs. w;$. 

numerical stability, and accuracy were observed. One corrector iteration was suf- 
ficient for numerical stability. However, a second corrector iteration in MAGICL 
reduced the relative error in the conservation of energy by a factor of 10 in some 
cases and to a magnitude of typically 0.1 to 0.5 %; similar results were achieved with 
only one corrector iteration when the interpolation/extrapolation of E and B for pur- 
poses of advancing the particles on the corrector iteration was biased backward 
toward the previous macro time step. Conservation of total energy and canonical 
momentum in MAGICL is generally quite good. Errors accumulate but can be kept 
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FIG. 7. For the same simulation parameters described in Fig. 5 are shown simulation results with 
square data window and data window switched smoothly on and off with sinusoidal time dependence: 
(a) A, vs. $,I, (b) E, vs. wzit, and (c) the maximum B in the vacuum magnetic field vs. mzif. E, is 
quieter with use of the rounded data window. 

at levels of less than a few percent. For AT/At 9 1, e.g., c&AT > 6, numerical 
stability and accuracy were independent of AT/At, whose selection is then only 
restricted by just how slowly varying are the fields to be followed in the simulation. 
The selection of a = v = 0.75 k 0.05 seemed to minimize energy errors and critically 
damped unwanted transients and high-frequency oscillations. 

Extrapolation of E and B ahead in time for use in Eq. (13) in predicting new 
velocities made no difference compared to holding these values constant over the 
predictor macro time step. Use of second-order interpolation and extrapolation of E 
and B in time to advance the velocities on the corrector iteration resulted in no 
significant improvement over first-order interpolation and extrapolation. However, 
holding E and B constant in time during both corrector and predictor iterations led to 
unacceptable particle trajectories. This was due to the resulting “jerks” when at each 
macro time step E and B changed by discrete amounts, but were constant over all in- 
tervening micro time steps. We have observed that significant quieting of E, noise 
arising from the discreteness of the injection model occurred in simulations with 
MAGICL. This represents a real improvement in bringing the physics model closer to 
rality. As previously mentioned, a rounded digital-smoothing function W further 
reduced noise in E,, but not dramatically. 

For our one-dimensional studies of build-up to near field reversal with the injection 
rate held constant, we were able to reduce the particle requirement by a factor of 2 
with orbit-averaging. Because the injection was tangential and at a distance approx- 
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imately equal to the ions’ Larmor radii, ring-like plasmas were produced in these 
studies. Systems with such high degrees of order can be simulated without aid of 
orbit-averaging with fairly few particles, -1000 in our studies; therefore not much 
reduction can be obtained with orbit-averaging. With increased disorder and a slower 
injection rate, so that 1 d In B/dt 1 was correspondingly smaller, we were able to em- 
ploy a larger ratio of AT/At and fewer particles than in a conventional simulation. 
We thus have evidence that the economic success of the application of orbit- 
averaging to magneto-inductive simulation is dependent on the particular problem, 
while numerical stability and a good accuracy were not. 

We speculate that the use of orbit-averaging in a simulation with a high intrinsic 
statistical requirement offers greater likelihood of gain in computational efftciency, 
say, for example, in electrostatic simulations of warm plasmas in which charge 
separation and Debye shielding effects must be adequately resolved. We already have 
evidence that the savings of particles and hence in computations can be more sub- 
stantial in a magneto-inductive simulation of a plasma with a significant degree of 
disorder and with an increased number of phase-space dimensions. In simulations of 
diffuse injection and build-up of the 2XIIB mirror experiment with 
SUPERAVERAGE, which has five phase-space dimensions (r, z; ug, ur, u,), orbit 
averaging has enabled the reduction of the particle requirement by a factor of 16 
relative to previous SUPERLAYER simulations in some cases. Furthermore, these 
simulations were stable and exhibited less than 1 o/ discrepancy in energy conserva- 
tion with only one corrector iteration, which made for a total of two passes through 
the particle mover per time step At. Thus there was achieved a reduction by 16/2 = 8 
in computations associated with particle-pushing through the use of orbit-averaging in 
some of our simulations. 

Figures 8 and 9 show simulation results from SUPERAVERAGE and 
COMPARABLE results from SUPERLAYER. Deuterium atoms were injected 
continuously at a rate I = 300 A with a bimodal energy spectrum peaked at 14 and 
10 keV. These neutrals were ionized by electron collisions and charge exchange in a 
target plasma with presumed electron temperature of 50 eV. Ions were deposited 
diffusely over a radius 0 < r < 7.5 cm and an axial extent -20 cm 5 .a 5 20 cm. The 
applied magnetic field was 4350 G in the midplane with a mirror ratio of 1.2 at 
z = f50 cm. The self-magnetic fields grew to ABIB, N 0.7 at steady state, and the 
density built up to n = 2 x 1014 cm- 3. For the simulation with SUPERAVERAGE 
c&At = 0.2, AT/At = 60, one corrector iteration was used, a = r= 0.95, and there 
was a sixteenfold reduction in the injection rate of simulation particles but no 
reduction in the total current represented. These values of a and tl differ slightly from 
the optimal values used in MAGICL. The optimal values of a and q were somewhat 
problem dependent, and best results were obtained in MAGICL by tuning the choice 
of a and q for the particular type of problem involved. Similar tuning has so far not 
been performed in SUPERAVERAGE. The SUPERAVERAGE simulation results 
agreed with those of SUPERLAYER within reasonable expectations, but quite effec- 
tively filtered noise associated with the discreteness of the injection model, and hence 
were much quieter. 
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FIG. 8. Simulations with SUPERLAYER and SUPERAVERAGE of neutral-beam (deuterium) in- 
jection at rate 300 A into an applied magnetic field of B, = 4350 G at the midplane with mirror ratio 1.2 
at z = f50 cm. The neutrals had 12 keV average energy and were deposited diffusely over 
0 < r < 7.5 cm and -20 cm <z ,< 20 cm. The simulations used wEjAr = 0.2 and included ion drag on 
electrons. In SUPERAVERAGE, AT/At = 60 and only one corrector iteration was used. At nearly 
steady state (wzit= 120) are shown B:/B,, vs. radius r and axial position z, and the ion phase space 
L~J’u,, vs. L’, ,/Ls~, where u0 is the velocity corresponding to the average injection energy of 12 keV. 

We are particularly enthusiastic over the orbit-averaging technique, because it is 
now feasible to simulate mirror plasmas like the ZXIIB experiment without ar- 
tificially accelerating the classical and anomalous diffusion rates and the neutral- 
beam injection and deposition rates, which had heretofore implied an arbitrary com- 
pression of the difference in build-up/transport and ion cyclotron time scales. In one 
preliminary case with SUPERAVERAGE, we employed a reduction of -6000 in the 

581/38/I-5 
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FIG. 9. For the simulations described in Fig. 8 are shown the maximum Z = 1 - (B,),,,/(B,),,,, 
and K = 1 -(B&,/B,, in the midplane (z = 0) as functions of time. The oscillattons in the 
SUPERLAYER Z and K traces coincide with the discrete pulses of newly injected ions. These pulses 
drove oscillations in E,, which modified in turn the ion orbits and were responsible for the oscillatory 
and systematic differences in Z and K obtained with SUPERLAYER and SUPERAVERAGE. 

injection rate with respect to SUPERLAYER which had accelerated this rate. This 
simulation had 5650 particles in it at steady state, as compared to the -20,000 parti- 
cles that were typically required in a conventional simulation. Furthermore, there was 
no acceleration of the classical ion-electron slowing-down rate v:‘~ relative to the ion 
cyclotron frequency for the parameters used in the simulation to model the 2XIIB ex- 
periment. For a density of ionized deuterium n, - 2 x lOi crne3 at steady state, an 
assumed electron temperature T, = 55 eV, and B, = 4350 G, w$t = 2.4 x lo4 and 
vyet = 6 at the end of the simulation. This simulation required 34 minutes on the 
CRAY I computer. Orbit-averaging and time-splitting have thus allowed us to begin 
simulating efficiently and accurately a magnetic fusion experiment of current interest 
without artificial acceleration of slow time scales and resealing of fundamental 
plasma parameters. 

ACKNOWLEDGMENTS 

We are grateful to Jack Byers for initially stimulating interest in this endeavor and for his continuing 
assistance and encouragement. We also thank A. B. Langdon, C. K. Birdsall, W. C. Condit. and A. 
Friedman for a number of valuable discussions, suggestions, criticisms, and interest. 

This work was performed under the auspices of the U.S. Department of Energy by the Lawrence 
Livermore Laboratory under Contract W-7405-ENG-48. 



AN ORBIT-AVERAGED PARTICLE CODE 63 

REFERENCES 

I. C. K. BIRDSALL AND A. B. LANGDON, Plasma physics via computer simulation, to be published. 
2. J. A. BYERS. B. 1. COHEN, W. C. CONDIT, AND J. D. HANSON, J. Computational Phys. 27 (1978). 

363: A. FRIEDMAN, R. L. FERCH, R. N. SUDAN, AND A. T. DROBOT, Plasma Phys. 19 (1977) 1101. 
3. J. A. BYERS. private communication. 
4. R. P. FREIS, Nucl. Fusion 13 (1973), 247. 
5. J. A. BYERS. Phys. Rev. Let&. 39 (1977), 1476. 
6. B. B. GODFREY. J. Computational Phys. 15 (1974) 504. 
7. A. B. LANGDON AND B. F. LASINSKI, in “Methods in Computational Physics” (.I. Killeen, Ed.), Vol. 

16. p. 338. Academic Press, New York, 1976. 
8. C. E. RATHMANN. J. L. VOMVORIDIS, AND J. DENAVIT, J. Computational Phys. 26 (1977), 408. 
9. T. L. CRYSTAL. J. DENAVIT. AND C. E. RATHMANN, Comments Plasma Phys. Cont. Fusion 5 (1979) 

17. 
10. A. B. LANGDON. J. Computational Phys. 30 (1979), 202. 
I 1. D. 0. DICKMAN. R. L. MORSE, AND C. W. NIELSON, Phys. Fluids 12 (1969), 1708. 
12. T. A. BRENGLE AND B. I. COHEN, “MAGIC: A One-Dimensional Magneto-Inductive Particle 

Code,” Lawrence Livermore Laboratory Report UCID-17795 Rev. 1, University of California, July 
1978. 

13. C. G. DARWIN, Philos. Mag. 39 (1920), 537; C. W. NIELSON AND H. R. LEWIS, in “Methods in 
Computational Physics” (J. Killeen, Ed.), Vol. 16, p. 367, Academic Press, New York, 1976. 

14. J. P. BORIS, in “Proceedings of the Fourth Conference on Numerical Simulation of Plasma” (J. P. 
Boris and R. Shanny, Eds.), p. 3, U.S. Government Printing Office, Washington, DC., 1971. 

15. D. Fuss AND C. K. BIRDSALL, J. Computational Phys. 3 (1969), 494. 

16. A. FRIEDMAN AND R. L. FERCH, private communication. 
17. D. E. BALDWIN AND M. E. RENSINK, Comments Plasma Phys. Cont. Fusion 4 (1978), 55. 


